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Quantum-‘‘classical’’ correspondence in a nonadiabatic transition system
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A nonadiabatic transition system which exhibits ‘‘quantum chaotic’’ behavior@H. Fujisaki and K. Takatsuka,
Phys. Rev. E63, 066221~2001!# is investigated from quasiclassical aspects. Since such a system does not have
a naive classical limit, we take the mapping approach@Stock and Thoss, Phys. Rev. Lett.78, 578 ~1997!# to
represent the quasiclassical dynamics of the system. We numerically show that there is a sound correspondence
between the quantum chaos and classical chaos for the system.
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Nonadiabatic transition~NT! is a very fundamental con
cept in physics and chemistry@1,2#. In the fields of atomic,
molecular, and chemical physics, NTs occur as a breakd
of the Born-Oppenheimer~BO! approximation, which is es
sentially an adiabatic approximation to solve quantum s
tems with many degrees of freedom. It is still a tough pro
lem to analyze the properties of NTs especially
multidimensional systems. One reason preventing us f
deeper understanding of NT is the lack of a naive quantu
classical correspondence for NT as well as for tunneling p
nomena@3,4#. One way to get the classical picture for a N
system is to go back to the original system before the
approximation: Fuchigami and Someda investigated dyna
cal properties of H2

1 from classical points of view by treatin
an electron and nuclei as dynamical variables@5#. Though
there is a full quantum study for such a small system
compare with@6#, this ‘‘purist’’ way cannot be easily applied
to much more ‘‘complex’’ systems.

The mapping method recently advocated by Stock
Thoss@7# can circumvent this deficiency.~This is reminis-
cent of the Meyer-Miller method@8#.! Their method is as
follows: After the BO approximation, the discrete electron
degrees of freedom are mapped onto the Schwinger bo
@9#. Since all the degrees of freedom become just bosons
total system is rather easily treated semiclassically or qu
classically. Using this method semiclassically, one can
tain, e.g., absorption spectra even for a pyrazin molec
with 24 degrees of freedom@10#. One can use it quasiclass
cally by solving the equations of motion derived from a ma
ping Hamiltonian. This is a very easy way to simulate N
systems because the additional number of degrees of
dom for electronic parts is rather small. Using the perio
orbit theory@11# or the adiabatic switching method@12#, one
can obtain even quantum eigenenergies and eigenstate
principle @13#.

On the other hand, multidimensional NT systems such
Jahn-Teller molecules@14# are known to show ‘‘quantum
chaotic’’ behavior@11#. Fujisaki and Takatsuka investigate
this problem deeply employing the two-mode–two-st
~TMTS! system which is considered as a system with t
vibrational modes and two electronic states@15#. They cal-
culated the statistical properties of the eigenenergies
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eigenfunction for the TMTS system, and found that the s
tem becomes strongly quantum chaotic under a certain c
dition. In addition, they showed that the chaos is not jus
reflection of the lower adiabatic system nor that of the dia
tic systems.~On the other hand, the chaos of all previo
studies is just a reflection of the lower adiabatic syste
@14#.! This means that conventional classical descriptions
not help to explain the quantum chaotic behavior. Hence
system deserves to be further studied from the ‘‘mappin
~extended classical! points of view. Though there are som
studies which investigated chaotic properties of this kind
mixed quantum-classical systems@16#, our focus here is a
quantum-‘‘classical’’ correspondence~if any! for the TMTS
system.

The TMTS system@15# first introduced by Heller@17# is
described by the following Hamiltonian:

HTMTS5S Tkin1VA J

J Tkin1VB
D , ~1!

whereTkin is the kinetic energy,Vi ( i 5A,B) is the potential
energy for statei defined by

Tkin5 1
2 ~px

21py
2!, ~2!

VA5 1
2 ~vx

2x21vy
2y2!1eA , ~3!

VB5 1
2 ~vx

2j21vy
2h2!1eB , ~4!

with

j5~x12a sinu!cos 2u1~y22a cosu!sin 2u, ~5!

h52~x12a sinu!sin 2u1~y22a cosu!cos 2u. ~6!

Note that we have just used a harmonic potential for e
state. For the geometrical meaning of the parameters,
Fig. 1. Here the Duschinsky angleu @18# and the nonadia-
batic coupling constantJ are two important parameters fo
the system. If these are appropriately chosen, the system
comes strongly quantum chaotic, i.e., the nearest-neigh
energy-level spacing distribution becomes the Wigner ty
and the amplitude distribution of the eigenstates becom
Gaussian@15#.

The mapping Hamiltonian@7,10# for this system is
©2004 The American Physical Society01-1
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Hmap5Tkin1NAVA1NBVB1J~xAxB1pApB!, ~7!

with

Ni5
xi

21pi
2

2
2g ~ i 5A,B!. ~8!

Note thatNA1NB51. From this relation, one might con
siderNi ( i 5A,B) as a probability but it is not the case. Th
is because the numerical range forNi is 2g,Ni,11g.
The equations of motion for this Hamiltonian are derived
follows:

d

dt
xA5VApA1JpB ,

d

dt
pA52VAxA2JxB , ~9!

d

dt
xB5VBpB1JpA ,

d

dt
pB52VBxB2JxA , ~10!

d

dt
x5px ,

d

dt
px52

]VA

]x
NA2

]VB

]x
NB , ~11!

d

dt
y5py ,

d

dt
py52

]VA

]y
NA2

]VB

]y
NB . ~12!

As a reference system, we take the lower adiabatic sys
as in Ref.@15#. The lower adiabatic system is defined by t
following Hamiltonian:

Had
25Tkin1Vad

2 , ~13!

with

Vad
25

VA1VB

2
2AS VA2VB

2 D 2

1J2. ~14!

Since the TMTS system can be quantum chaotic as m
tioned above, we investigate the chaotic properties for
mapping system and the lower adiabatic system. As an i
cator of chaos, it is very natural to take Lyapunov expone
@19#. We focus on a finite-time maximum Lyapunov exp
nent calculated as

FIG. 1. A schematic representation of the TMTS system. T
distance between the minima of the potential is 2a, and the angle
between the relevant crossing seam~dotted line! and the primary
axis of each potential~dashed line! is u. Inset: The perspective o
the TMTS system. The potential minima are different withDe
5eB2eA50.173.
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lmax~T!.
1

T
ln

Dd~T!

Dd~0!
, ~15!

with

Dd~ t !25D x̃A~ t !21D p̃A~ t !21D x̃B~ t !21D p̃B~ t !21D x̃~ t !2

1D p̃x~ t !21D ỹ~ t !21D p̃y~ t !2, ~16!

where x̃A5xA /A212g, p̃A5pA /A212g, x̃B5xA /A2g,
p̃B5pA /A2g, x̃5vxx/A2E, ỹ5vyy/A2E, p̃x5px /A2E,
p̃y5py /A2E, andE is the total energy for the system. He
tilde variables are introduced for normalization andD means
a distance between a trajectory and its auxiliary one. In
following we take the typical value ofg, i.e.,g51/2 @7#. For
the numerical calculation of Lyapunov exponents, t
method by Benettinet al. @20# is employed, i.e., we calculat
lmax(T) for a finite T, then shorten the distanceDd(T) to
Dd(0), and run thetrajectory again and so on. In this stud
we took T524 because of the numerical divergence
Dd(T) for larger values ofT.

e

FIG. 2. J dependence of the distribution of the Lyapunov exp
nents for the mapping system. The nonadiabatic coupling is~a! J
50.3, ~b! J51.5, and~c! J57.5. The finite time isT524, and the
iterative number of the time average is 10. The Duschinsky ang
u5p/3.
1-2
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Following the previous studies@15#, we concentrate on a
rather high energy region aroundE5E0528. ~This energy is
much higher than that around the crossing seam regi!
Varying the Duschinsky angleu and the nonadiabatic cou
pling constantJ, we calculate the distribution of the finite
time maximum Lyapunov exponentlmax(T). For simplicity,
hereafter, we calllmax(T) just as a Lyapunov exponent. Sinc
the phase space has a structure especially for the lower
batic system, globally averaged Lyapunov exponents are
so useful. Instead, we investigate the properties of the di
bution of the Lyapunov exponents, which reflects pha
space structure of the system.~Remember that the Berry
Robnik distribution, which reflects the phase space volu
of chaotic seas, is useful for mixed systems@21#.! To this
end, we prepare an initial ensemble of particles which
sampled from a part of the equienergy potential surf
VA(x,y)5E0 with constraints px5py50 and y,x tanu
1a/cosu. ~The latter constraint means that we only ta
points below the crossing seam. See Fig. 1.! We take 40
sample points from this curve and calculate the histogram
the Lyapunov exponents. We believe that these sample po
represent a typical situation of the TMTS system because

FIG. 3. J dependence of the distribution of the Lyapunov exp
nents for the lower adiabatic system. The nonadiabatic couplin
~a! J50.3, ~b! J51.5, and~c! J57.5. The finite time isT524, and
the iterative number of the time average is 10. The Duschin
angle isu5p/3.
03720
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least, the characteristic of the lower adiabatic system can
understood from these sampling points@15#.

First we fix u5p/3, and investigate theJ dependence of
the chaotic properties. Let us summarize the correspond
quantum results: the nearest-neighbor~energy-level! spacing
distribution is Wigner forJ51.5 ~third row of Fig. 3 in Ref.
@15#!, whereas it is rather Poisson forJ57.5 ~third row of
Fig. 4 in Ref.@15#!, and rather mixed forJ50.3 ~third row of
Fig. 2 in Ref. @15#!. Figure 2 shows the distribution of th
Lyapunov exponents for the TMTS system. The distributi
for J51.5 has a sharp peak around 1, whereas that foJ
57.5 has a rather broad peak around 0.4, and that foJ
50.3 is also a little bit broad. This corresponds to the qu
tum results, at least, qualitatively. On the other hand, Fig
shows the distribution of the Lyapunov exponents for t
lower adiabatic system. As one can see, the values th
selves are much smaller than those for the TMTS system
it is difficult to distinguish three distributions. This also co
responds to the quantum mechanical calculation for
lower adiabatic system~Fig. 9 in Ref.@15#!. From this com-
parison, it is reasonable to conclude that there is a so
quantum-classical correspondence between the TMTS
tem and the mapped system in view of their ‘‘chaotic’’ pro
erties.

-
is

y

FIG. 4. u dependence of the phase space averaged Lyapu
exponent for the mapping system withJ51.5. The Duschinsky
angle is~a! u50.0, ~b! u5p/6, and~c! u5p/3. The finite time is
T524, and the iterative number of the time average is 10.
1-3
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Next we investigate theu dependence of the chaotic pro
erties while fixingJ51.5. Although there is a strong pea
aroundlmax(T).1.3 as shown in Fig. 4~a!, we can see tha
the system withu50 is notglobally chaotic. This is becaus
x does not effectively coupled toy whenu50, and the mo-
tion alongx axis is regular.~On the other hand, even wit
u50, the motion alongy axis can be chaotic as shown b
the peak of the distribution around 1.3.! In such a case, we
do not expect that the Wigner-type distribution arises in
corresponding quantum system, and this is the case for
TMTS system~first row of Fig. 3 in Ref.@15#!. On the other
hand, for intermediate Duschinsky angles (u5p/6,p/3), the
Lyapunov exponent distributions show that the system is g
bally chaotic@Figs. 4~b,c!#, and the corresponding quantu
system can have the Wigner type distribution, which is a
confirmed numerically~second and third rows of Fig. 3 in
Ref. @15#!. Of course, we have to admit that this correspo
dence is loosely stated, and there remains a difficult ques
o-

ay
d

em

cs
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exactly when the quantum chaos begins in the param
space. Such an issue must be addressed utilizing semicl
cal methods@7,11# or the adiabatic switching method@12#. It
is also interesting to investigate phase space structure of
mapping system and to relate it to the nearest-neighbor s
ing distribution via the Berry-Robnik distribution@21#. We
also hope that this study will cast a light on the relati
between the statistical reaction theory for NT systems
Lyapunov spectra for them.

In this paper, employing the mapping approach by Sto
and Thoss, we investigated a nonadiabatic transition sys
which exhibits quantum chaotic behavior from quasiclass
aspects. By comparing the statistical properties~nearest-
neighbor spacing distribution etc.! of the quantum system
with the Lyapunov exponent distributions of the mappi
system, we found that there is a sound quantum-class
correspondence in the system.

The author thanks T. Takami for comments.
.

m.

ex-
@1# H. Nakamura,Nonadiabatic Transition: Concepts, Basic The
ries and Applications~World Scientific, Singapore, 2002!; C.
Zhu, Y. Teranishi, and H. Nakamura, Adv. Chem. Phys.117,
127 ~2001!.

@2# K. Takatsuka, Y. Arasaki, K. Wang, and V. McKoy, Farad
Discuss.115, 1 ~2000!; Y. Arasaki, K. Takatsuka, K. Wang, an
V. McKoy, Phys. Rev. Lett.90, 248303~2003!.

@3# H. Ushiyama and K. Takatsuka, Phys. Rev. E53, 115 ~1996!;
K. Giese, H. Ushiyama, and O. Ku¨hn, Chem. Phys. Lett.371,
681 ~2003!.

@4# A. Shudo and K.S. Ikeda, Physica D115, 234 ~1998!; T. On-
ishi, A. Shudo, K.S. Ikeda, and K. Takahashi, Phys. Rev. E64,
025201~R! ~2001!.

@5# S. Fuchigami and K. Someda, J. Phys. Soc. Jpn.72, 1891
~2003!; see also M.P. Strand and W.P. Reinhardt, J. Ch
Phys.70, 3812~1979!.

@6# I. Kawata, H. Kono, and Y. Fujimura, J. Chem. Phys.110, 11
152 ~1999!.

@7# G. Stock and M. Thoss, Phys. Rev. Lett.78, 578 ~1997!; M.
Thoss and G. Stock, Phys. Rev. A59, 64 ~1999!.

@8# H.-D. Meyer and W.H. Miller, J. Chem. Phys.70, 3214~1979!;
71, 2156 ~1979!; see also X. Sun and W.H. Miller,ibid. 106,
6346 ~1997!.

@9# J.J. Sakurai,Modern Quantum Mechanics~Addison-Wesley,
Reading, MA, 1994!.

@10# M. Thoss, W.H. Miller, and G. Stock, J. Chem. Phys.112, 10
282 ~2000!.

@11# M.C. Gutzwiller,Chaos in Classical and Quantum Mechani
~Springer-Verlag, New York, 1990!.

@12# W.P. Reinhardt, Adv. Chem. Phys.73, 925~1990!; R.T. Skodje
.

and J.R. Cary, Comput. Phys. Rep.8, 223 ~1988!.
@13# J. Zwanziger, E.R. Grant, and G.S. Ezra, J. Chem. Phys.85,

2089 ~1986!; M. Pletyukhov, Ch. Amann, M. Mehta, and M
Brack, Phys. Rev. Lett.89, 116601 ~2002!; B. Balzer, S.
Dilthey, S. Hahn, M. Thoss, and G. Stock, J. Chem. Phys.119,
4204 ~2003!.
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