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Quantum-“classical” correspondence in a nonadiabatic transition system
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A nonadiabatic transition system which exhibits “quantum chaotic” behdWoiFujisaki and K. Takatsuka,
Phys. Rev. 63, 066221(2001)] is investigated from quasiclassical aspects. Since such a system does not have
a naive classical limit, we take the mapping approggtock and Thoss, Phys. Rev. L€et8, 578 (1997)] to
represent the quasiclassical dynamics of the system. We numerically show that there is a sound correspondence
between the quantum chaos and classical chaos for the system.
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Nonadiabatic transitiofiNT) is a very fundamental con- eigenfunction for the TMTS system, and found that the sys-
cept in physics and chemistfy,2]. In the fields of atomic, tem becomes strongly quantum chaotic under a certain con
molecular, and chemical physics, NTs occur as a breakdowlition. In addition, they showed that the chaos is not just a
of the Born-OppenheimdiBO) approximation, which is es- reflection of the lower adiabatic system nor that of the diaba-
sentially an adiabatic approximation to solve quantum systic systems.(On the other hand, the chaos of all previous
tems with many degrees of freedom. It is still a tough prob-studies is just a reflection of the lower adiabatic systems
lem to analyze the properties of NTs especially for[14].) This means that conventional classical descriptions do
multidimensional systems. One reason preventing us fromot help to explain the quantum chaotic behavior. Hence this
deeper understanding of NT is the lack of a naive quantumsystem deserves to be further studied from the “mapping”
classical correspondence for NT as well as for tunneling phetextended classicapoints of view. Though there are some
nomend 3,4]. One way to get the classical picture for a NT studies which investigated chaotic properties of this kind of
system is to go back to the original system before the BOnixed quantum-classical systerfisg], our focus here is a
approximation: Fuchigami and Someda investigated dynamiquantum-“classical” correspondenc# any) for the TMTS
cal properties of B from classical points of view by treating system.
an electron and nuclei as dynamical variablgs Though The TMTS systenj15] first introduced by Hellef17] is
there is a full quantum study for such a small system tadescribed by the following Hamiltonian:
compare with 6], this “purist” way cannot be easily applied
to much more “complex” systems. o Tiint Va J

The mapping method recently advocated by Stock and T™MTS™ J Ten+ Vs’
Thoss[7] can circumvent this deficiencyThis is reminis-
cent of the Meyer-Miller method8].) Their method is as whereT,, is the kinetic energyy; (i=A,B) is the potential
follows: After the BO approximation, the discrete electronic energy for state defined by
degrees of freedom are mapped onto the Schwinger bosons

D

[9]. Since all the degrees of freedom become just bosons, the Tiin= %(p>2(+ pi), 2
total system is rather easily treated semiclassically or quasi-
classically. Using this method semiclassically, one can ob- VA:%(wiszr w§y2)+eA, 3)
tain, e.g., absorption spectra even for a pyrazin molecule
with 24 degrees of freedofii0]. One can use it quasiclassi- Vp= (w2 + w§n2) . (4)

cally by solving the equations of motion derived from a map-

ping Hamiltonian. This is a very easy way to simulate NT with

systems because the additional number of degrees of free-

dom for electronic parts is rather small. Using the periodic &=(x+2asinf)cos 20+ (y—2acosh)sin20, (5
orbit theory[11] or the adiabatic switching methdd2], one

can obtain even quantum eigenenergies and eigenstates, in = —(x+ 2asin)sin 20+ (y—2acosf)cos 20. (6)
principle [13].

On the other hand, multidimensional NT systems such adlote that we have just used a harmonic potential for each
Jahn-Teller molecule§l4]| are known to show “quantum state. For the geometrical meaning of the parameters, see
chaotic” behavior[11]. Fujisaki and Takatsuka investigated Fig. 1. Here the Duschinsky angi[18] and the nonadia-
this problem deeply employing the two-mode—two-statebatic coupling constand are two important parameters for
(TMTS) system which is considered as a system with twothe system. If these are appropriately chosen, the system be-
vibrational modes and two electronic staf@$]. They cal- comes strongly quantum chaotic, i.e., the nearest-neighbor
culated the statistical properties of the eigenenergies anenergy-level spacing distribution becomes the Wigner type

and the amplitude distribution of the eigenstates becomes
Gaussiarf15].
*Electronic address: fujisaki@bu.edu The mapping Hamiltoniah7,10] for this system is
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Note thatNo+Ng=1. From this relation, one might con-
siderN; (i=A,B) as a probability but it is not the case. This
is because the numerical range fdr is — y<N;<1+y.

The equations of motion for this Hamiltonian are derived as 0
fO”OWS 0 02 04 06 08 1 12 14 16
' A1)

d d FIG. 2. J dependence of the distribution of the Lyapunov expo-

thA_VApA+JpB’ dtpA_ VaXa= X, © nents for the mapping system. The nonadiabatic coupling)is
=0.3, (b) J=1.5, and(c) J="7.5. The finite time isT =24, and the

d d iterative number of the time average is 10. The Duschinsky angle is

aXB:VBpB"_‘JpAv FTLC —VeXg=IXa, (100 p= 3.
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gt P gt T T Na g Ner (3D Ml )= 1"5q0) (15
d _ d _ oV Vg with

ay—py, apy__WNA_WNB. (12)

2 AT (V2 AT (12 AT (1124 AT (12t AT(1)2
As a reference system, we take the lower adiabatic systent*d(1)"=AXa(D) "+ ApA(1) "+ Axg(t)“+ Apg(t) "+ AX(1)

as in Ref[15]. The lower adiabatic system is defined by the ~ o = o =
following Hamiltonian: HAP(D)+HAY (D) +Ap, (D)7, (16)
Had™ TkinT Vaas (13)  where Xa=Xa/\2+2y, Pa=Pa/\2+2y, Xg=Xal\27,

Ps= pA/\/Z_’ X:wxX/\/ﬁa y:wyy/ \/E, Px= px/\/ﬁ,
p,=py,/+2E, andE is the total energy for the system. Here
) tilde variables are introduced for normalization akhdneans
+J% (14 a distance between a trajectory and its auxiliary one. In the
following we take the typical value of, i.e., y=1/2[7]. For
Since the TMTS system can be quantum chaotic as merthe numerical calculation of Lyapunov exponents, the
tioned above, we investigate the chaotic properties for thenethod by Benettiret al.[20] is employed, i.e., we calculate
mapping system and the lower adiabatic system. As an indix no(T) for a finite T, then shorten the distancded(T) to
cator of chaos, it is very natural to take Lyapunov exponents\d(0), and run therajectory again and so on. In this study,
[19]. We focus on a finite-time maximum Lyapunov expo- we took T=24 because of the numerical divergence of
nent calculated as Ad(T) for larger values off.

with

Va—Vg|?
2

_ VatVg
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FIG. 3. J dependence of the distribution of the Lyapunov expo-  FIG. 4. ¢ dependence of the phase space averaged Lyapunov
nents for the lower adiabatic system. The nonadiabatic coupling igxponent for the mapping system with=1.5. The Duschinsky
(@ J=0.3,(b) J=1.5, and(c) J=7.5. The finite time iF=24, and  angle is(a) #=0.0, (b) 6= 7/6, and(c) 6= =/3. The finite time is
the iterative number of the time average is 10. The Duschinskyr=24, and the iterative number of the time average is 10.
an = .

gle is6=ml3 least, the characteristic of the lower adiabatic system can be

, i . understood from these sampling poiht$].

Following the previous studig45], we concentrate on a First we fix 6= /3, and investigate thé dependence of
rather high energy region aroufic= Eq=28. (This energy is  the chaotic properties. Let us summarize the corresponding
much higher than that around the crossing seam regionguantum results: the nearest-neighbemergy-level spacing
Varying the Duschinsky anglé and the nonadiabatic cou- distribution is Wigner ford=1.5 (third row of Fig. 3 in Ref.
pling constant), we calculate the distribution of the finite- [15]), whereas it is rather Poisson fdk= 7.5 (third row of
time maximum Lyapunov exponent,,(T). For simplicity,  Fig. 4 in Ref.[15]), and rather mixed fod = 0.3 (third row of
hereafter, we call ,,,,(T) just as a Lyapunov exponent. Since Fig. 2 in Ref.[15]). Figure 2 shows the distribution of the
the phase space has a structure especially for the lower adisyapunov exponents for the TMTS system. The distribution
batic system, globally averaged Lyapunov exponents are ndor J=1.5 has a sharp peak around 1, whereas thatl for
so useful. Instead, we investigate the properties of the distri=7.5 has a rather broad peak around 0.4, and that]for
bution of the Lyapunov exponents, which reflects phase=0.3 is also a little bit broad. This corresponds to the quan-
space structure of the systerfRemember that the Berry- tum results, at least, qualitatively. On the other hand, Fig. 3
Robnik distribution, which reflects the phase space volum&hows the distribution of the Lyapunov exponents for the
of chaotic seas, is useful for mixed systef2d].) To this lower adiabatic system. As one can see, the values them-
end, we prepare an initial ensemble of particles which argelves are much smaller than those for the TMTS system and
sampled from a part of the equienergy potential surfacet is difficult to distinguish three distributions. This also cor-
Va(X,y)=Eq with constraintsp,=p,=0 and y<xtand responds to the quantum mechanical calculation for the
+alcosd. (The latter constraint means that we only takelower adiabatic syster(Fig. 9 in Ref.[15]). From this com-
points below the crossing seam. See Fig. We take 40 parison, it is reasonable to conclude that there is a sound
sample points from this curve and calculate the histogram foguantum-classical correspondence between the TMTS sys-
the Lyapunov exponents. We believe that these sample pointem and the mapped system in view of their “chaotic” prop-
represent a typical situation of the TMTS system because, afrties.
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Next we investigate thé dependence of the chaotic prop- exactly when the quantum chaos begins in the parameter
erties while fixingJ=1.5. Although there is a strong peak space. Such an issue must be addressed utilizing semiclassi-
around\ .{T)=1.3 as shown in Fig.4), we can see that cal methodg7,11] or the adiabatic switching meth¢d2]. It
the system with9=0 is notglobally chaotic. This is because IS also interesting to investigate phase space structure of this
x does not effectively coupled tpwhen 6=0, and the mo- Mapping system and to relate it to the nearest-neighbor spac-
tion alongx axis is regular(On the other hand, even with ing distribution via the Berry-Robnik distributiof21]. We
9=0, the motion along axis can be chaotic as shown by also hope that thls_ study W!|| cast a light on the relation
the peak of the distribution around 1.3n such a case, we between the statistical reaction theory for NT systems and
do not expect that the Wigner-type distribution arises in thé‘y"’l‘mﬂg\’p?peeitrzrl;oglg;?nr;' the mapping approach by Stock
g.%;e;z?/g?elag(f:?:f rnot\l;lvrr;fsg%[.egn i,naggf.t[qlé])l.soﬂr]]ethcsso?hzr thaend Thoss, we investigated a nonadiabatic transition system

. . i which exhibits quantum chaotic behavior from quasiclassical
hand, for intermediate Duschinsky anglés<(n/6,m/3), the 54005 By comparing the statistical propertiesarest-

Lyapunov e_qunent distributions show that the_system is gloheighbor spacing distribution elcof the quantum system
bally chaotic[Figs. 4(b,0], and the corresponding quantum it the Lyapunov exponent distributions of the mapping

system can have the Wigner type distribution, which is alsqystem, we found that there is a sound quantum-classical
confirmed numericallysecond and third rows of Fig. 3 in correspondence in the system.

Ref.[15]). Of course, we have to admit that this correspon-
dence is loosely stated, and there remains a difficult question The author thanks T. Takami for comments.
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